Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Materials (Basel) ; 17(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612139

RESUMO

Grit basting is the most common process applied to titanium dental implants to give them a roughness that favors bone colonization. There are numerous studies on the influence of roughness on osseointegration, but the influence of the compressive residual stress associated with this treatment on biological behavior has not been determined. For this purpose, four types of surfaces have been studied using 60 titanium discs: smooth, smooth with residual stress, rough without stress, and rough with residual stress. Roughness was studied by optic interferometry; wettability and surface energy (polar and dispersive components) by contact angle equipment using three solvents; and residual stresses by Bragg-Bentano X-ray diffraction. The adhesion and alkaline phosphatase (ALP) levels on the different surfaces were studied using Saos-2 osteoblastic cultures. The bacterial strains Streptococcus sanguinis and Lactobacillus salivarius were cultured on different surfaces, determining the adhesion. The results showed that residual stresses lead to increased hydrophilicity on the surfaces, as well as an increase in surface energy, especially on the polar component. From the culture results, higher adhesion and higher ALP levels were observed in the discs with residual stresses when compared between smooth and roughened discs. It was also found that roughness was the property that mostly influenced osteoblasts' response. Bacteria colonize rough surfaces better than smooth surfaces, but no changes are observed due to residual surface tension.

2.
Rev Esp Geriatr Gerontol ; 59(4): 101488, 2024 Mar 28.
Artigo em Espanhol | MEDLINE | ID: mdl-38552373

RESUMO

Advance care planning is a deliberative process that aims to help patients define goals and preferences for future care and treatment at a times when they have limited decision-making capacity. This study aims to analyze models of advance care planning in elderly individuals living in nursing homes. We reviewed papers published in Cochrane, PubMed and Embase. A total of 26 studies were selected, including a total of 44,131 people over 65 years of age. We analyzed the types of intervention (interviews, videos, workshops, documentation, etc.) and their results derived from the application. We conclude that no study implements a standardized intervention model. These interventions include decision-making (transfers to hospital, resucitation orders) and the adequacy of therapeutic effort (antibiotherapy, nutrition, serotherapy, etc.). Other outcomes are implementation barriers (time and training).

3.
Materials (Basel) ; 17(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38541514

RESUMO

Invisible orthodontic aligners are having a great impact on tooth movement in an aesthetic and effective way. Different techniques, models, and clinical aspects have been studied for their proper use. However, the aim of this research has been to determine the effect of the shaping process on mechanical properties and their bacterial behavior. For this study, 40 original polyurethane plates and 40 identical models, obtained by hot forming the original plates, were used. The static tensile mechanical properties were studied with a Zwick testing machine using testing speeds of 5 mm/min at a temperature of 37 °C. The original plate and the aligner have been studied with a creep test by subjecting the samples to a constant tension of 30 N, and determining the elongation using a long-distance, high-resolution microscope at different time periods between 1 and 720 h. Studies of water absorption has been realized with artificial saliva for 5 h. Bacterial cultures of Streptococcus oralis and Actinomyces viscosus strains were grown on the original plates and on new and used models, to determine the proliferation of each bacterium through metabolic activity, colony-forming units, and LIVE/DEAD assays. The mechanical results showed an increase in the strength of the inserts with respect to the models obtained from 3.44 to 3.95 MPa in the elastic limit and a lower deformation capacity. It has been proven that the transition zone in the creep curves lasts longer in the original plate, producing the rapid increase in deformation at a shorter time (400 h) in the aligner. Therefore, the shaping process reduces the time of dental correction exerted by the aligner. The results of the bacterial culture assays show an increase in the number of bacterial colonies when the aligners have been used and when the polyurethane is conformed due to the internal energy of the model, with respect to the original polyurethane. It has been observed that between the original plate and the aligner there are no statistically significant differences in water absorption and therefore the forming process does not affect water absorption. A slight increase in water absorption can be observed, but after five hours of exposure, the increase is very small.

4.
Materials (Basel) ; 17(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38255602

RESUMO

STATEMENT OF PROBLEM: Implant-supported rehabilitations are an increasingly frequent practice to replace lost teeth. Before clinical application, all implant components should demonstrate suitable durability in laboratory studies, through fatigue tests. OBJECTIVE: The purpose of this in vitro study was to evaluate the integrity and wear of implant components using SEM, and to assess the axial displacement of the implant-abutment assembly by Micro-CT, in different implant connections, after three distinct mechanical requests. MATERIALS AND METHODS: Four KLOCKNER implants (external connection SK2 and KL; and internal connection VEGA and ESSENTIAL) were submitted to three different mechanical requests: single tightening, multiple tightening, and multiple tightening and cyclic loading (500 N × 100 cycles). A total of 16 samples were evaluated by SEM, by the X-ray Bragg-Brentano method to obtain residual stresses, and scratch tests were realized for each surface and Micro-CT (4 control samples; 4 single tightening; 4 multiple tightening; 4 multiple tightening and cyclic loading). All dental implants were fabricated with commercially pure titanium (grade 3 titanium). Surface topography and axial displacement of abutment into the implant, from each group, were evaluated by SEM and Micro-CT. RESULTS: In the manufacturing state, implants and abutments revealed minor structural changes and minimal damage from the machining process. The application of the tightening torque and loading was decisive in the appearance and increase in contact marks on the faces of the hexagon of the abutment and the implant. Vega has the maximum compressive residual stress and, as a consequence, higher scratch force. The abutment-implant distances in SK2 and KL samples did not show statistically significant differences, for any of the mechanical demands analyzed. In contrast, statistically significant differences were observed in abutment-implant distance in the internal connection implants Vega and Essential. CONCLUSIONS: The application of mechanical compression loads caused deformation and contact marks in all models tested. Only internal connection implants revealed an axial displacement of the abutment into the implant, but at a general level, a clear intrusion of the abutment into the implant could only be confirmed in the Essential model, which obtained its maximal axial displacement with cyclic loading.

5.
Dent Mater ; 40(1): 9-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858421

RESUMO

OBJECTIVES: To determine the influence of different surface roughness and residual stress of hybrid surface implants on their behavior and mechanical failure. METHODS: Three types of implants with different surface roughness were used as specimens: smooth, rough, and hybrid. A diffractometer was used to determine the residual stress of the implants according to their different surface treatment. These results were used as an independent variable in a finite element analysis that compared the three specimens to determine the von Mises stress transferred to the implants and supporting bone and the resulting microdeformations. Flexural strength and fatigue behavior tests were performed to compare the results of the three types of implants. RESULTS: Higher residual stress values were found for rough surfaces (p < 0.05, Student's t-test) compared to smooth surfaces, and both types of stress were different for the two types of hybrid implant surfaces. Finite element analysis found different von Mises stress and microdeformation results, both at the level of the implant and the bone, for the three types of implants under study. These results were correlated with the different flexural strength behaviors (lower resistance for hybrids and higher for rough surfaces, p < 0.05) and fatigue behavior (the rough implant had the longest fatigue life, while the hybrid implant exhibited the worst fatigue behavior). SIGNIFICANCE: The results show a trend toward a less favorable mechanical behavior of the hybrid implants related to the retention of different residual stresses caused by the surface treatment.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Estresse Mecânico , Análise do Estresse Dentário/métodos
6.
Plant Physiol ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124468

RESUMO

C-REPEAT BINDING FACTORS (CBFs) are highly conserved plant transcription factors that promote cold tolerance. In Arabidopsis (Arabidopsis thaliana), three CBFs (CBF1-3) play a critical role in cold acclimation, and the expression of their corresponding genes is rapidly and transiently induced during this adaptive response. Cold induction of CBFs has been extensively studied and shown to be tightly controlled, yet the molecular mechanisms that restrict the expression of each CBF after their induction during cold acclimation are poorly understood. Here, we present genetic and molecular evidence that the decline in the induction of CBF3 during cold acclimation is epigenetically regulated through the Polycomb Repressive Complex (PRC) 2. We show that this complex promotes the deposition of the repressive mark H3K27me3 at the coding region of CBF3, silencing its expression. Our results indicate that the cold-inducible long noncoding RNA SVALKA is essential for this regulation by recruiting PRC2 to CBF3. These findings unveil a SVALKA-PRC2 regulatory module that ensures the precise timing of CBF3 induction during cold acclimation and the correct development of this adaptive response.

7.
Nat Commun ; 14(1): 6962, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907508

RESUMO

Changing the perception of defects as imperfections in crystalline frameworks into correlated domains amenable to chemical control and targeted design might offer opportunities for the design of porous materials with superior performance or distinctive behavior in catalysis, separation, storage, or guest recognition. From a chemical standpoint, the establishment of synthetic protocols adapted to control the generation and growth of correlated disorder is crucial to consider defect engineering a practicable route towards adjusting framework function. By using UiO-66 as experimental platform, we systematically explored the framework chemical space of the corresponding defective materials. Periodic disorder arising from controlled generation and growth of missing cluster vacancies can be chemically controlled by the relative concentration of linker and modulator, which has been used to isolate a crystallographically pure "disordered" reo phase. Cs-corrected scanning transmission electron microscopy is used to proof the coexistence of correlated domains of missing linker and cluster vacancies, whose relative sizes are fixed by the linker concentration. The relative distribution of correlated disorder in the porosity and catalytic activity of the material reveals that, contrarily to the common belief, surpassing a certain defect concentration threshold can have a detrimental effect.

10.
J Am Chem Soc ; 145(39): 21397-21407, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733631

RESUMO

Titanium-organic frameworks offer distinctive opportunities in the realm of metal-organic frameworks (MOFs) due to the integration of intrinsic photoactivity or redox versatility in porous architectures with ultrahigh stability. Unfortunately, the high polarizing power of Ti4+ cations makes them prone to hydrolysis, thus preventing the systematic design of these types of frameworks. We illustrate the use of heterobimetallic cluster Ti2Ca2 as a persistent building unit compatible with the isoreticular design of titanium frameworks. The MUV-12(X) and MUV-12(Y) series can be all synthesized as single crystals by using linkers of varying functionalization and size for the formation of the nets with tailorable porosity and degree of interpenetration. Following the generalization of this approach, we also gain rational control over interpenetration in these nets by designing linkers with varying degrees of steric hindrance to eliminate stacking interactions and access the highest gravimetric surface area reported for titanium(IV) MOFs (3000 m2 g-1).

11.
Materials (Basel) ; 16(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37629895

RESUMO

The aim of the present study was to describe and determine changes in the superelastic properties of NiTi archwires after clinical use and sterilization. Ten archwires from five different manufacturers (GAC, 3M, ODS, GC, FOR) were cut into two segments and evaluated using a three-point bending test in accordance with ISO 14841:2006. The center of each segment was deflected to 3.1 mm and then unloaded to 0 N to obtain a load-deflection curve. Deflection at the end of the plateau and forces at 3, 2, 1 and 0.5 mm on the unloading curve were recorded. Plateau slopes were calculated at 2, 1 and 0.5 mm of deflection. Data obtained were statistically analyzed to determine differences (p < 0.001). Results showed that the degree of superelasticity and exerted forces differed significantly among brand groups. After three months of clinical use, FOR released a greater force for a longer activation period. GC, EURO and FOR archwires seemed to lose their mechanical properties. GC wires released more force than other brand wires after clinical use. Regarding superelasticity after sterilization, GAC, 3M and FOR wires recovered their properties, while EURO archwires lost more.

12.
Materials (Basel) ; 16(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444905

RESUMO

This in vitro study analyzed the influence of substrate roughness on biofilm adhesion and cellular viability over triethoxysilylpropyl succinic anhydride silane (TESPSA)- and citric acid (CA)-coated surfaces at 12 and 24 h, respectively. A multispecies biofilm composed of S. oralis, A. naslundii, V. parvula, F. nucleatum, P. intermedia, P. gingivalis, P. endodontalis and F. alocis was developed over titanium discs grouped depending on their roughness (low, medium, high) and antibacterial coating (low-TESPSA, medium-TESPSA, high-TESPSA, and CA). The biofilm was quantified by means of quantitative polymerase chain reaction (PCR) and viability PCR and assessed through confocal laser scanning microscope (CLSM). Quantitative PCR revealed no significant differences in bacterial adhesion and biofilm mortality. CA was the surface with the lowest bacterial counts and highest mortality at 12 and 24 h, respectively, while high harbored the highest amount of biofilm at 24 h. By CLSM, CA presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. A significantly greater volume of dead cells was found at 12 h in low-TESPSA compared to medium-TESPSA, while CA also presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. With regard to the live/dead ratio, low-TESPSA presented a significantly higher ratio at 12 h compared to medium-TESPSA and high-TESPSA. Similarly, CA exhibited a significantly higher live/dead ratio compared to medium-TESPSA and high-TESPSA at 12 h. This multispecies in vitro biofilm did not evidence clear antiadhesive and bactericidal differences between surfaces, although a tendency to reduce adhesion and increase antibacterial effect was observed in the low-TESPSA and CA.

13.
J Clin Med ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445228

RESUMO

In the placement of dental implants, the primary fixation between the dental implant and the bone is of great importance and corresponds to compressive mechanical fixation that aims to prevent micromovement of the implant. The aim of this research was to determine the role of roughness and the type of dental implant (tissue-level or bone-level) in implant stability, measured using resonance frequency analysis (RFA) and insertion torque (IT). We analyzed 234 titanium dental implants, placed in fresh calf ribs, at the half-tissue level and half-bone level. The implant surface was subjected to grit-blasting treatments with alumina particles of 120, 300, and 600 µm at a projection pressure of 2.5 bar, resulting in three types of roughness. Roughness was determined via optical interferometry. The wettability of the surfaces was also determined. Implant stability was measured using a high-precision torquemeter to obtain IT, and RFA was used to determine the implant stability quotient (ISQ). The results show that rough surfaces with Sa values of 0.5 to 4 µm do not affect the primary stability. However, the type of implant is important; bone-level implants obtained the highest primary stability values. A good correlation between the primary stability values obtained via IT and ISQ was demonstrated. New in vivo studies are necessary to know whether these results can be maintained in the long term.

14.
Materials (Basel) ; 16(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297223

RESUMO

One of the most used rotary files in endodontics is NiTi files due to their superelastic properties. This property means that this instrument has extraordinary flexion that can adapt to large angles inside the tooth canals. However, these files lose their superelasticity and fracture during use. The aim of this work is to determine the cause of fracture of the endodontic rotary files. For this purpose, 30 NiTi F6 SkyTaper® files (Komet, Germany) were used. Their chemical composition was determined by X-ray microanalysis, and their microstructure was determined by optical microscopy. Successive drillings were carried out with artificial tooth molds at 30, 45, and 70°. These tests were carried out at a temperature of 37 °C with a constant load controlled by a high sensitivity dynamometer of 5.5 N, and every five cycles were lubricated with an aqueous solution of sodium hypochlorite. The cycles to fracture were determined, and the surfaces were observed by scanning electron microscopy. Transformation (austenite to martensite) and retransformation (martensite to austenite) temperatures and enthalpies were determined by Differential Scanning Calorimeter at different endodontic cycles. The results showed an original austenitic phase with a Ms temperature of 15 °C and Af of 7 °C. Both temperatures increase with endodontic cycling, indicating that martensite forms at higher temperatures, and the temperature must be increased with cycling to retransform it to austenite. This fact indicates the stabilization of martensite with cycling, which is confirmed by the decrease in both transformation and retransformation enthalpies. The martensite is stabilized in the structure due to defects and does not retransform. This stabilized martensite has no superelasticity and, therefore, fractures prematurely. It has been possible to observe the stabilized martensite by studying the fractography, observing that the mechanism is by fatigue. The results showed that the files fracture earlier the greater the angle applied (for the tests at 70° at 280 s, at 45° at 385 s, and at 30° at 1200 s). As the angle increases, there is an increase in mechanical stress, and, therefore, the martensite stabilizes at lower cycles. To destabilize the martensite, a heat treatment can be carried out at 500 °C for 20 min, and the files recovers all its superelasticity.

15.
Chem Sci ; 14(25): 6826-6840, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389254

RESUMO

Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry. This possibility is even more challenging for titanium-organic frameworks due to the additional difficulties intrinsic to controlling the chemistry of titanium in solution. In this perspective article we provide an overview of the synthesis and advanced characterization of mixed-metal frameworks and emphasize the particularities of those based in titanium with particular focus on the use of additional metals to modify their function by controlling their reactivity in the solid state, tailoring their electronic structure and photocatalytic activity, enabling synergistic catalysis, directing the grafting of small molecules or even unlocking the formation of mixed oxides with stoichiometries not accessible to conventional routes.

16.
J Funct Biomater ; 14(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37367285

RESUMO

Bacterial infections in dental implants generate peri-implantitis disease that causes bone loss and the mobility of the dental implant. It is well known that specific ranges of roughness favor the proliferation of bacteria, and it is for this reason that new dental implants called hybrids have appeared. These implants have a smooth area in the coronal part and a rough surface in the apical part. The objective of this research is the physico-chemical characterization of the surface and the osteoblastic and microbiological behavior. One-hundred and eighty discs of titanium grade 3 with three different surfaces (smooth, smooth-rough, and completely rough) were studied. The roughness was determined by white light interferometry, and the wettability and surface energy by the sessile drop technique and the application of Owens and Wendt equations. Human osteoblast SaOS-2 was cultured to determine cell adhesion, proliferation, and differentiation. Microbiological studies were performed with two common bacterial strains in oral infection, E. faecalis and S. gordonii, at different times of culture. The roughness obtained for the smooth surface was Sa = 0.23 and for the rough surface it was 1.98 µm. The contact angles were more hydrophilic for the smooth surface (61.2°) than for the rough surface (76.1°). However, the surface energy was lower for the rough surface (22.70 mJ/m2) in both its dispersive and polar components than the smooth surface (41.77 mJ/m2). Cellular activity in adhesion, proliferation, and differentiation was much higher on rough surfaces than on smooth surfaces. After 6 h of incubation, the osteoblast number in rough surfaces was more than 32% higher in relation to the smooth surface. The cell area in smooth surfaces was higher than rough surfaces. The proliferation increased and the alkaline phosphatase presented a maximum after 14 days, with the mineral content of the cells being higher in rough surfaces. In addition, the rough surfaces showed greater bacterial proliferation at the times studied and in the two strains used. Hybrid implants sacrifice the good osteoblast behavior of the coronal part of the implant in order to obstruct bacterial adhesion. The following fact should be considered by clinicians: there is a possible loss of bone fixation when preventing peri-implantitis.

17.
J Am Chem Soc ; 145(26): 14276-14287, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339504

RESUMO

We report an innovative approach to producing bacteriochlorins (bacs) via formal cycloaddition by subjecting a porphyrin to a trimolecular reaction. Bacs are near-infrared probes with the intrinsic ability to serve in multimodal imaging. However, despite their ability to fluoresce and chelate metal ions, existing bacs have thus offered limited ability to label biomolecules for target specificity or have lacked chemical purity, limiting their use in bio-imaging. In this work, bacs allowed a precise and controlled appending of clickable linkers, lending the porphyrinoids substantially more chemical stability, clickability, and solubility, rendering them more suitable for preclinical investigation. Our bac probes enable the targeted use of biomolecules in fluorescence imaging and Cerenkov luminescence for guided intraoperative imaging. Bacs' capacity for chelation provides opportunities for use in non-invasive positron emission tomography/computed tomography. Herein, we report the labeling of bacs with Hs1a, a (NaV1.7)-sodium-channel-binding peptide derived from the Chinese tarantula Cyriopagopus schmidti to yield Bac-Hs1a and radiolabeled Hs1a, which shuttles our bac sensor(s) to mouse nerves. In vivo, the bac sensor allowed us to observe high signal-to-background ratios in the nerves of animals injected with fluorescent Bac-Hs1a and radiolabeled Hs1a in all imaging modes. This study demonstrates that Bac-Hs1a and [64Cu]Cu-Bac-Hs1a accumulate in peripheral nerves, providing contrast and utility in the preclinical space. For the chemistry and bio-imaging fields, this study represents an exciting starting point for the modular manipulation of bacs, their development and use as probes for diagnosis, and their deployment as formidable multiplex nerve-imaging agents for use in routine imaging experiments.


Assuntos
Porfirinas , Animais , Camundongos
18.
Dent Mater ; 39(6): 616-623, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37173196

RESUMO

OBJECTIVES: To evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation. METHODS: Doxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti-DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control. Human MG-63 osteoblast-like cells were cultured. Osteoblasts proliferation was tested by MTT assay. Alkaline phosphatase activity was analyzed. Differentiation gene expression was assessed by real-time quantitative polymerase chain reaction. Scanning Electron Microscopy was performed to assess osteoblasts morphology. Mean comparisons were conducted by ANOVA and Wilcoxon or Tukey tests (p < 0.05). RESULTS: No differences in osteoblasts proliferation were found. Osteoblasts grown on Ti-DoxNPs significantly increased alkaline phosphatase activity. Doxycycline and dexamethasone nanoparticles produced an over-expression of the main osteogenic proliferative genes (TGF-ß1, TGF-ßR1 and TGF-ßR2). The expression of Runx-2 was up-regulated. The osteogenic proteins (AP, OSX and OPG) were also overexpressed on osteoblasts cultured on Ti-DoxNPs and Ti-DexNPs. The OPG/RANKL ratio was the highest when DoxNPs were present (75-fold increase with respect to the control group). DexNPs also produced a significantly higher OPG/RANKL ratio with respect to the control (20 times higher). Osteoblasts grown on titanium discs were mainly flat and polygonal in shape, with inter-cellular connections. In contrast, osteoblasts cultured on Ti-DoxNPs or Ti-DexNPs were found to be spindle-shaped and had abundant secretions on their surfaces. SIGNIFICANCE: DoxNPs and DexNPs were able to stimulate osteoblasts differentiation when applied on titanium surfaces, being considered potential inducers of osteogenic environment when performing regenerative procedures around titanium dental implants.


Assuntos
Nanopartículas , Titânio , Humanos , Titânio/farmacologia , Doxiciclina/farmacologia , Doxiciclina/metabolismo , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Osteogênese , Dexametasona/farmacologia , Dexametasona/metabolismo , Osteoblastos , Propriedades de Superfície , Proliferação de Células
19.
Materials (Basel) ; 16(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241275

RESUMO

One of the strategies for the fight against peri-implantitis is the fabrication of titanium dental implants with the part close to the neck without roughness. It is well known that roughness favors osseointegration but hinders the formation of biofilm. Implants with this type of structure are called hybrid dental implants, which sacrifice better coronal osseointegration for a smooth surface that hinders bacterial colonization. In this contribution, we have studied the corrosion resistance and the release of titanium ions to the medium of smooth (L), hybrid (H), and rough (R) dental implants. All implants were identical in design. Roughness was determined with an optical interferometer and residual stresses were determined for each surface by X-ray diffraction using the Bragg-Bentano technique. Corrosion studies were carried out with a Voltalab PGZ301 potentiostat, using Hank's solution as an electrolyte at a temperature of 37 °C. Open-circuit potentials (Eocp), corrosion potential (Ecorr), and current density (icorr) were determined. Implant surfaces were observed by JEOL 5410 scanning electron microscopy. Finally, for each of the different dental implants, the release of ions into Hank's solution at 37 °C at 1, 7, 14, and 30 days of immersion was determined by ICP-MS. The results, as expected, show a higher roughness of R with respect to L and compressive residual stresses of -201.2 MPa and -20.2 MPa, respectively. These differences in residual stresses create a potential difference in the H implant corresponding to Eocp of -186.4 mV higher than for the L and R of -200.9 and -192.2 mV, respectively. The corrosion potentials and current intensity are also higher for the H implants (-223 mV and 0.069 µA/mm2) with respect to the L (-280 mV and 0.014 µA/mm2 and R (-273 mV and 0.019 µA/mm2). Scanning electron microscopy revealed pitting in the interface zone of the H implants and no pitting in the L and R dental implants. The titanium ion release values to the medium are higher in the R implants due to their higher specific surface area compared to the H and L implants. The maximum values obtained are low, not exceeding 6 ppb in 30 days.

20.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176435

RESUMO

The influence of the surface topography of dental implants has been studied to optimize titanium surfaces in order to improve osseointegration. Different techniques can be used to obtain rough titanium, however, their effect on wettability, surface energy, as well as bacterial and cell adhesion and differentiation has not been studied deeply. Two-hundred disks made of grade 4 titanium were subjected to different treatments: machined titanium (MACH), acid-attacked titanium (AE), titanium sprayed with abrasive alumina particles under pressure (GBLAST), and titanium that has been treated with GBLAST and then subjected to AE (GBLAST + AE). The roughness of the different treatments was determined by confocal microscopy, and the wettability was determined by the sessile drop technique; then, the surface energy of each treatment was calculated. Osteoblast-like cells (SaOs-2) were cultured, and alkaline phosphatase was determined using a colorimetric test. Likewise, bacterial strains S. gordonii, S. oralis, A. viscosus, and E. faecalis were cultured, and proliferation on the different surfaces was determined. It could be observed that the roughness of the GBLAST and GBLAS + AE was higher, at 1.99 and 2.13 µm of Ra, with respect to the AE and MACH samples, which were 0.35 and 0.20 µm, respectively. The abrasive treated surfaces showed lower hydrophilicity but lower surface energy. Significant differences could be seen at 21 days between SaOS-2 osteoblastic cell adhesion for the blasted ones and higher osteocalcin levels. However, no significant differences in terms of bacterial proliferation were observed between the four surfaces studied, demonstrating the insensitivity of bacteria to topography. These results may help in the search for the best topographies for osteoblast behavior and for the inhibition of bacterial colonization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA